Software Engineering Observation 11.1

Copying and pasting code from one class to another can
spread many physical copies of the same code and can
spread errors throughout a system, creating a code-
maintenance nightmare. To avoid duplicating code (and
possibly errors), use inheritance, rather than the “copy-
and-paste” approach, in situations where you want one
class to “absorb” the data members and member
functions of another class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 11.2

With inheritance, the common data members and
member functions of all the classes in the hierarchy are
declared in a base class. When changes are required for
these common features, you need to make the changes
only in the base class—derived classes then inherit the
changes. Without inheritance, changes would need to be
made to all the source code files that contain a copy of
the code in question.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee

Inheritance Hierarchy
Now we create and test a new BasePlusCommissionEmployee
class (Figs. 11.10-11.11) that derives from class
CcommissionEmployee (Figs. 11.4-11.5).
In this example, a BasePlusCommissionEmployee object /s a
CommissionEmployee (because inheritance passes on the
capabilities of class CommissionEmployee), but class
BasePlusCommissionEmployee also has data member
baseSalary (Fig. 11.10, line 22).
The colon (:) in line 10 of the class definition indicates inheritance.
Keyword pub 11 c indicates the type of inheritance.
As a derived class (formed with pub 11 ¢ inheritance),
BasePlusCommissionEmployee inherits all the members of class
CommissionEmployee, except for the constructor—each class
provides its own constructors that are specific to the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy (cont.)

e Destructors, too, are not inherited

« Thus, the pub11c services of
BasePlusCommissionEmployee include its
constructor and the pub 11 ¢ member functions inherited
from class CommissionEmp loyee—although we cannot
see these inherited member functions in
BasePlusCommissionEmployee’s source code,
they’re nevertheless a part of derived class
BasePlusCommissionEmployee.

« The derived class’s pub 11 c services also include member
functions setBaseSalary, getBaseSalary,
earnings and print.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 11.10: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef
5 #define
6
7 #include <string> // C++ standard string class
8 #include // CommissionEmployee class declaration
9
10 class BasePlusCommissionEmployee : public CommissionEmployee
11 {
12 public:
13 BasePlusCommissionEmployee(const std::string &, const std::string &,
14 const std::string &, double = , double = , double =);
15
16 void setBaseSalary(double); // set base salary
17 double getBaseSalary() const; // return base salary
I8
Fig. 11.10 | BasePlusCommissionEmployee class definition indicating

inheritance relationship with class CommissionEmployee. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

19 double earnings() const; // calculate earnings

20 void print() const; // print BasePlusCommissionEmployee object
21 private:

22 double baseSalary; // base salary

23 }; // end class BasePlusCommissionEmployee

24

25 #endif

Fig. 11.10 | BasePlusCommissionEmployee class definition indicating
inheritance relationship with class CommissionEmployee. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 11.11: BasePlusCommissionEmployee.cpp

2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>

4 #include <stdexcept>

5 #include

6 using namespace std;

7

8 // constructor

9 BasePlusCommissionEmployee: :BasePlusCommissionEmployee(

10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)

12 // explicitly call base-class constructor

13 : CommissionEmployee(first, last, ssn, sales, rate)

14 {

15 setBaseSalary(salary); // validate and store base salary
16 1} // end BasePlusCommissionEmployee constructor

—
=]

Fig. 1'1.11 | BasePTusCommissionEmployee implementation file: private
base-class data cannot be accessed from derived class. (Part | of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I8 // set base salary
19 void BasePlTusCommissionEmployee: :setBaseSalary(double salary)
20 {

21 if (salary >=)

22 baseSalary = salary;

23 else

24 throw invalid_argument()
25 } // end function setBaseSalary

26

27 // return base salary
28 double BasePTusCommissionEmployee::getBaseSalary() const
29 {

30 return baseSalary;
31 } // end function getBaseSalary
32

33 // calculate earnings
34 double BasePlusCommissionEmployee::earnings() const
35 {

36 // derived class cannot access the base class’s private data
37 return baseSalary + (commissionRate * grossSales);

38 } // end function earnings

39

Fig. 11.11 | BasePlusCommissionEmployee implementation file: private
base-class data cannot be accessed from derived class. (Part 2 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

40
41
42
43
44
45
46
47
48
49

// print BasePlusCommissionEmployee object
void BasePTusCommissionEmployee: :print() const

{
// derived class cannot access the base class’s private data
cout << << firstName <<
<< lastName << << socialSecurityNumber
<< << grossSales
<< << commissionRate
<< << baseSalary;

} // end function print

Fig. 11.11 | BasePTusCommissionEmployee implementation file: private
base-class data cannot be accessed from derived class. (Part 3 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Compilation Errors from the LLVM Compiler in Xcode 4.5

BasePlusCommissionEmployee.cpp:37:26:

"commissionRate' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:37:43:

'grossSales' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:44:53:

'firstName' is a private member of 'CommissionEmployee'
BasePlTusCommissionEmployee.cpp:45:10:

'"TastName' 1is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:45:54:

'socialSecurityNumber' is a private member of 'CommissionEmployee'’
BasePlusCommissionEmployee.cpp:46:31:

'grossSales' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:47:35:

'commissionRate' is a private member of 'CommissionEmployee'

Fig. 1'1.11 | BasePTusCommissionEmployee implementation file: private
base-class data cannot be accessed from derived class. (Part 4 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy (cont.)

Figure 11.11 shows BasePlusCommissionEmployee’s
member-function implementations.

The constructor introduces base-class initializer syntax, which
uses a member initializer to pass arguments to the base-class
constructor.

C++ requires that a derived-class constructor call its base-class
constructor to Initialize the base-class data members that are
Inherited into the derived class.

If BasePlusCommissionEmployee’s constructor did not
invoke class CommissionEmployee’s constructor explicitly,
C++ would attempt to invoke class CommissionEmployee’s
default constructor—but the class does not have such a
constructor, so the compiler would issue an error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

2

Common Programming Error 11.1

When a derived-class constructor calls a base-class
constructor, the arguments passed to the base-class
constructor must be consistent with the number and
types of parameters specified in one of the base-class
constructors; otherwise, a compilation error occurs.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 11.1

In a derived-class constructor, invoking base-class
constructors and initializing member objects explicitly in
the member initializer list prevents duplicate
initialization in which a default constructor is called,
then data members are modified again in the derived-

class constructor’s body.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee

Inheritance Hierarchy (cont.)

Compilation Errors from Accessing Base-Class private Members

« The compiler generates errors for line 37 of Fig. 11.11 because base
class CommissionEmployee’s data members commissionRate
and grossSales are private—derived class
BasePlusCommissionEmployee’s member functions are 170t
allowed to access base class CommissionEmployee’s private
data.

« We used red text in Fig. 11.11 to indicate erroneous code.

« The compiler issues additional errors in lines 44-47 of BasePlus-
commission-Employee’s print member function for the same
reason.

« C++ rigidly enforces restrictions on accessing private data
members, so that even a derived class (which iIs intimately related to its
base class) cannot access the base class’s private data.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy (cont.)

Preventing the Errors in
BasePlusCommissionEmployee
* \We purposely included the erroneous code in Fig. 11.11 to
emphasize that a derived class’s member functions cannot
access its base class’s private data.
« Theerrorsin BasePlusCommissionEmployee could

have been prevented by using the get member functions
inherited from class CommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

